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Abstract
The low-energy electronic structure of a metallic single-walled carbon nanotube
(SWNT) in an external electric field perpendicular to the tube axis is
investigated. Based on tight-binding approximation, a field-induced energy
gap is found in all (n, n) SWNTs, and the gap shows strong dependence on the
electric field and the size of the tubes. We numerically find a universal scaling
that the gap is a function of the electric field and the radius of SWNTs, and the
results are testified by the second-order perturbation theory in weak field limit.
Our calculation shows the field required to induce a 0.1 eV gap in metallic
SWNTs can be easily reached under the current experimental conditions. It
indicates the possibility of applying nanotubes to electric signal-controlled
nanoscale switching devices.

The prospect of nanoscale electronic devices has engaged great interest, because it could
lead to conceptually new miniaturization strategies in the electronics and computer industry.
Single-walled carbon nanotubes (SWNTs) can be used as nanoscale devices [1] due to their
extraordinarily small diameter and versatile electronic properties [2]. It is suggested that
individual SWNT may act as devices such as field-effect transistors (FET) [3], single-electron-
tunneling transistors [4,5], rectifiers [6,7], or p–n junctions [8]. The most exciting expectation
lies in the devices fabricated on a single tube [9].

In recent years, the interplay between mechanical deformation and electrical properties
of SWNTs have been extensively studied [9–12]. Among them, some structural deformations
such as twisting, bending, stretching, and topological defects are not compatible with desirable
stable contacts for reversibly controllable devices [13]. More recently, Tombler et al [14, 15]
used an atomic force microscope tip to manipulate a metallic SWNT, leading to a reversible
two-order magnitude change of conductance, and Lammert et al [13] applied a uniaxial stress to
squash SWNTs and detect a similar reversible metal–insulator (M–I) transition. Since the tube
ends do not need to move and they are easily controlled, the studies pointed to the possibility
that a metallic SWNT may be used as an ultrasmall electromechanical switch.

It is also well known that a magnetic field can change the conductance of carbon
nanotubes [16–18]. The magnetic field either parallel or perpendicular to the axis can change
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the low-energy electronic properties of the tubes. However, a possible electric field-controlled
M–I transition is more exciting because of its easy implementation in the actual applications.
Now, a question remains: can an electric field change the electronic properties of a tube?

In previous studies on electronic transports [19], since the bias voltage is a slow-change
variable in the range of the primitive unit cell, the possible change of the energy-band structure
induced by the bias voltage is neglected. The controlled potential, such as the gate voltage in
the case of FET [3], does not induce a voltage drop in the direction perpendicular to the tube
axis, and it only shifts Fermi level or changes the carrier concentration. In the literature, to our
knowledge, the fact that the properties of the longitudinal electronic transports are changed
by a transverse electric field has not been studied. In fact, because of the small diameter of
SWNTs ( ≈ 1 nm ), it is easy to exert a strong electric field (| �E| ∼ V nm−1 ∼ 108−9 V m−1)
perpendicular to the axis. In (n, n) metallic SWNT, the electrons near Fermi energy are
nonlocal in the circumference of the tube as their circumference Fermi wavevector is zero [2],
and the classic wave-package approximation in slow-change voltage may be not suitable in
the presence of the strong transverse electric field. The Vnm−1 order electric field is enough
to break the rotational symmetry about the tube axis, and create new interband and inter-
wavevector coupling, which may change the low-energy electronic properties of SWNTs, and
hence affect the electronic transport. On the other hand, the field is still 2–3 orders less than
the atomic interior electric field, and can be treated as perturbation.

In this letter, based on a tight-binding (TB) model, we calculate the low-energy electronic
structure of SWNTs in an external electric field perpendicular to the tube axis (see figure 1). The
result shows valuable effects: (1) the electric field can always induce an energy gap in (n, n)

metallic SWNTs; (2) there is a maximal gap strongly dependent on the radius of the tubes; (3)
a universal scaling is found for the gap as a function of the field and the size of the tubes; (4)
using the dielectric function of tubes obtained by Benedict et al [20], we find the magnitude of
the required electric field falls into the range of current experimental conditions, therefore this
allows the possibility of applying SWNTs to the electric-field-controlled nanoscale switching
devices.

E
+ + + +

- - - -

Figure 1. A uniform external electric field perpendicular to the axis of SWNT.

The nearest-neighbour TB approximation has been used successfully for calculating the
electronic structure of graphite sheet and nanotubes [2], and the polarization of SWNTs [20].
For the low-energy electronic properties of tubes in the presence of electric field, we will only
use the π -electron single-orbital TB approximation [21].

In the presence of a transverse electric field E, there is an additional coupling between
the nearest-neighbour atoms, reflected in the TB Hamiltonian

H = H0 + H1 (1)

where H0 is the unperturbed Hamiltonian, and H1 = eV (r). Here e is the charge of an
electron, and V (r) is the electrostatic potential of the total electric field which is equal to the
sum of an external field E0 and the polarized field induced by E0. For a uniform field [22],
the potential in the cylindrical surface of SWNT is

V (r) = −V0 cos φ (2)
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where V0 = RE is the transverse voltage drop of the tube, and φ is the azimuth of the cylinder.
Here R is the radius of SWNT, and E is the total electric field strength.

The main role of the electrostatic potential is to change the electronic energy of the ith
carbon atom by eV (Ri ), where Ri is the position vector of the ith atom. The hopping
correction due to the electric field between site i and site j is very small, about the
order of s. Here s is the overlap integral of two nearest neighbour atom i and atom j ,
s = ∫

φ∗
i (r)φj (r)d3r ≈ 0.129 [23], where φi(r) is the π -electron wavefunction of the ith

atom. The perturbed Hamiltonian matrix elements are:

〈φi |H1|φi〉 = eV (Ri ) (3)

〈φi |H1|φj 〉 ≈ esV (Rc
ij ) (4)

where Rc
ij = (Ri + Rj )/2 is the position of the mass centre of the two nearest neighbour i

atom and j atom. Equation (3) is precise because of the symmetry of wavefunction, but in
equation (4), we have neglected the electrostatic potential change in the overlapping range of
electronic clouds. After gaining these Hamiltonian matrix elements, we can easily calculate
the electronic structure of a nanotube in the presence of an electric field.

Figure 2 shows our result on the electronic energy bands of a (10, 10) tube in the presence
of electric fields with different magnitudes. When V0 = 0.5 V, a gap of Eg ∼ 0.3 eV is
found at K0, the Fermi wavevector in zero field. As V0 increases, the gap increases, and when
V0 = 1.5 V, we find that the band structure is obviously deformed. It is surprising to find
that the gap decreases as V0 increases further. When V0 = 3.0 V, the zero gap is found, but
the Fermi point dramatically moves to a different position from K0. The results reveal that a
controlled electric field of 1 Vnm−1 order can obviously affect the transport properties of a
(10, 10) tube.
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Figure 2. The energy bands of (10, 10) SWNT in the vicinity of Fermi level under the application
of a transverse electric field V0. (10, 10) tube is metal at V0 = 0 V, and it is a semiconductor in
the weak field range.

To probe the above effect in general, we performed the computation for a series of (n, n)

tubes. Figure 3 shows the gap as a function of the electric field in (n, n) tubes, where n is from
5 to 15. From figure 3, we find the determined effect: the electric field can always induce a
gap, i.e. a metal–insulator transition, in (n, n) tubes, and the size of the gap strongly depends
on the magnitude of the transverse field and the tube parameter n. For any (n, n) tubes, the
gap first increases with increasing field, and reaches a maximal value Egm at the V0 = V0m,
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then drops again. Both the maximal gap Egm and the corresponding V0m are approximately
proportional to 1/n, and hence inverse proportional to the radius of tubes, i.e.,

Egm ≈ 6.89 eV/n (5)

V0m ≈ 12.09 V/n. (6)

The finding, which is shown in (5) and (6) that the maximal gap Egm quickly decreases as the
size of conductor increases, indicates the electronic structure change is very small in the large
materials even though at very strong electric field. This might be the reason why people have
not yet recognized the effect in previous studies on large conductors. In the strong field range,
figure 3 shows a more complicated field dependence of the gap, which can also be negative.
The field dependence of the gap is quite similar for tubes with various radii, which invokes us
to scale both Eg and V0 up to n times their original values. The obtained results are shown in
figure 4. From it we do find the scaled gap to be a universal function of the scaled electric field
for all (n, n) tubes. In the weak field range, for all eleven calculated (n, n) tubes there exists
a simple relation: nEg = λ(neV0)

2, where λ is a constant, about 0.07 (eV)−1. In the middle
field range, apart from a few small-radius tubes such as (5, 5) and (6, 6) tubes, the universal
scaling law still holds.
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Figure 3. Field-induced gap of (n, n) tubes versus the field. From the top to the bottom, the tube
parameter n increases from 5 to 15. The clubs denote the position of the maximum gap point. In
the inset, both the maximum gap Egm and V0m ( see text ) are found to be proportional to 1/n The
lines are fitting results.

To understand the above scaling relation, we use perturbation theory to calculate the field-
induced gap in weak field limit. The first-order perturbation approximation only causes a shift
in the Fermi level, showing no contribution to the gap. Calculating up to the second-order
perturbation at K0 point, we obtained the following analytic result

Eg ≈
√

3

2πγ
ne2V0

2 (7)



Letter to the Editor L639

0 10 20
V0 n

0

3

6

E
g

n
(15,15)

( 8,8 )
( 7,7 )
( 6,6 )
( 5,5 )

Figure 4. Universal scaling are found for the gap as a function of V0 in different (n, n) tubes. At
weak field, the data of all tubes are very much consistent with the scaling relation nEg = λ(neV0)

2,
as expected by the second-order perturbation theory. The line is the fitting result. Except for (5, 5)
and (6,6) tubes, the universal scaling is satisfied well up to strong field region.

where γ (=3.033 eV) is the hopping parameter in the absence of the electric field [23, 24].
The contribution of the overlap integral s, which is very small, is neglected. The second-order
perturbation calculation gives almost the same scaling relation as the numerical results in the
weak field, though the obtained λ ≈ 0.09 (eV)−1 is slightly larger than the numerical result
0.07 (eV)−1. In the strong field range, since the Fermi wavevector is away from K0, the
perturbation theory becomes unsuitable. In fact, the weak field range may be more compatible
with the practical application. In order to open a 0.1 eV gap in the energy bands of (n, n)

tubes, according to equation (5) n must be smaller than 68, and the required electric field is,

E = 2π

3r0e

√
Eg

λ
n− 3

2 (8)

where r0 (=1.42 Å) is the bond length of carbon atoms in SWNT. Therefore, for example for
a (10, 10) tube, the required field is about 5 × 108 Vm−1, and for a (60, 60) tube, it is about
3 × 107 Vm−1. Since the total field E is equal to to the sum of the external field E0 and the
polarized field, we have E = E0/ε, where ε is the dielectric function. Under the homogeneous
polarization approximation, Benedict et al [20] calculated the ε of some tubes within random
phase approximation. Based on their results, we have [25],

ε = 1 + 5.2
R2

(R + δR)2
(9)

where R is the radius of tubes. Benedict gave δR about 1.2 Å. So the required external field
is approximately 6 times that of the calculated total field E. Since such a magnitude of the
electric field can be easily reached by the current experimental conditions, we would like the
above prediction to be checked in near future.

In summary, we have proposed an electric-field-induced M–I transition in (n, n) SWNTs
for the first time. The universal relationship between the gap and the electric field has been
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obtained in SWNTs by using the TB model. The results support the argument that SWNTs
can be applied as nanoscale electric signal-controlled switching devices.

The authors would like to thank Professor H-W Peng, Professor Z-B Su and Dr H-J Zhou for
many discussions on the results. The numerical calculations were performed partly at ITP-Net
and partly at the State Key Laboratory of Scientific and Engineering Computing.
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